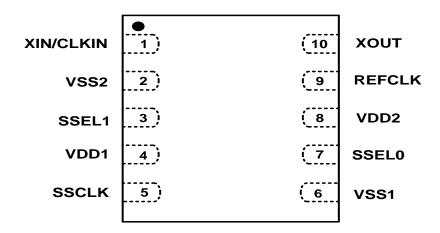


Low Jitter and Power Clock Generator with SSCG


Key Features	Description
 Low power dissipation 13.5mA-typ CL=15pF 18.0mA-max CL=15pF 3.3V +/-10% power supply range 27.000MHz crystal or clock input 27.000MHz REFCLK 	The SL16010DC is a low power dissipation spread spectrum clock generator using SLI proprietary low jitter PLL. The SL16010DC provides two output clocks. REFCLK (Pin-9) which is a buffered output of the 27.000MHz input crystal and SSCLK (Pin-5) which is synthesized as 100.000MHz nominal by an internal PLL using the 27.00MHz external input crystal or clock.
 100MHz SSCLK with SSEL0/1 spread options Low CCJ Jitter Low LT Jitter Internal Voltage Regulators 45% to 55% Output Duty Cycle On-chip Crystal Oscillator 	In addition, SSEL0 (Pin-7) and SSEL1 (Pin-3) spread percent selection control inputs enable users to select from 0.0% (no spread) to -3.0% down spread at 100.000MHz SSCLK output to reduce and optimize system EMI levels.
 -10 to +85 Temperature Range 10-pin 3x3x0.75 mm TDFN package 	The SL16010DC operates in an extended temperature range of -10 to +85°C.
 Application Video Cards NB and DT PCs 	Contact SLI for other programmable frequencies, Spread Spectrum Clock (SSC) options, as well as 2.5V+/-10 and 1.8V+/-5% power supply options.
HDTV and DVD-R/W	Benefits
 Routers, Switches and Servers Data Communications Embeded Digital Applications 	 EMI Reduction Improved Jitter Low Power Dissipation Eleminates external Xtals or XOs

Block Diagram

Page 1 of 9

Pin	Pin Name	Pin Type	Pin Description
Number			
1	XIN/CLKIN	Input	External crystal or clock input. Capacitance at this pin is 4 pF-typ.
2	VSS2	Power	Power supply ground for 27.000MHz REFCLK output.
3	SSEL1	Input	SSEL1 spread percent selection pin. Refer to Table 5 for available spread options using SSEL1 pin. Three state, Low (L), Middle (M) and High (H) digital input logic levels. This pin has $150k\Omega$ -typ input pull down resistor.
4	VDD1	Power	Positive power supply for 100.000MHz SSCLK output. 3.3V +/-10%.
5	SSCLK	Output	SSCLK clock output. 100.000MHz nominal. Refer to Table 5 for available spread % options by using SSEL0 and SSEL1 control pins.
6	VSS1	Power	Power supply ground for 100.000MHz SSCLK output.
7	SSEL0	Input SSEL spread percent selection pin. Refer to Table 5 for available spread options using SSEL0 pin. Three state, Low (L), Middle (M) High (H) digital input logic levels. This pin has 150kΩ-typ input puresistor.	
8	VDD2	Power	Positive power supply for 27.000MHz REFCLK output. 3.3V +/-10%.
9	REFCLK	Output	REFCLK clock output. 27.000MHz nominal.
10	XOUT	Output	Crystal output. Capacitance at this pin 4 pF-typ. If clock input is used, leave this pin not connected (N/C).

Table 2. Absolute Maximum Ratings

Description	Condition	Min	Max	Unit
Supply voltage, VDD		-0.5	4.2	V
All Inputs and Outputs		-0.5	VDD+0.5	V
Ambient Operating Temperature	In operation, extended C grade	-10	85	°C
Storage Temperature	No power is applied	-65	150	°C
Junction Temperature	In operation, power is applied	-	125	°C
Soldering Temperature		-	260	°C
ESD Rating (Human Body Model)	JEDEC22-A114D	-4,000	4,000	V
ESD Rating (Charge Device Model)	JEDEC22-C101C	-1,500	1,500	V
ESD Rating (Machine Model)	JEDEC22-A115D	-200	200	V

Table 3. DC Electrical Characteristics (C-Grade)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -10 to +85Deg C

Description	Symbol	Condition	Min	Тур	Max	Unit
Operating Voltage	VDD1/2	VDD1=VDD2=3.3V +/-10%	2.97	3.3	3.63	V
Input Low Voltage	VINL	SSEL0 and SSEL1	0	-	0.2	V
Input Middle Voltage	VINM	SSEL0 and SSEL1	0.4VDD	-	0.6VDD	
Input High Voltage	VINH	SSEL0 and SSEL1	0.9VDD	-	VDD	V
Input High Voltage	VINH1	CMOS Level, Pin-1 If input is clock	0.7VDD	-	VDD	V
Input Low Voltage	VINL1	CMOS Level, Pin-1 If input is clock	0	-	0.3VDD	V
Output Low Voltage	VOL	IOL=15mA, Pins 5 and 9	-	-	0.4	V
Output High Voltage	VOH	IOH=-15mA , Pins 5 and 9	VDD-0.4	-	-	V
Power Supply Current	er Supply Current IDD SSEL=1, VDD=3.63		-	13.5	18.0	mA
Input Capacitance	CIN1	XIN and XOUT, Pins 1 and 10	-	4	-	pF
Input Capacitance	CIN2	SSEL0/1, Pins 7 and 3	-	3	5	pF
Load Capacitance	CL	SSCLK and REFCLK, Pins 5 and 9	-	-	15	pF
Pull Down Resistor	RPD		100	150	250	kΩ

Table 4. AC Electrical Characteristics (C-Grade)

Unless otherwise stated VDD= 3.3V+/-10%, CL=15pF and Ambient Temperature range -10 to +85 Deg C

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Frequency Range	FR-1	Input crystal or clock range, +/-10 ppm	-	27.000	-	MHz

		crystal accuracy if a crystal is used				
Frequency Range	FR-2	REFCLK, Pin 9	-	27.000	-	MHz
Frequency Range	FR-3	SSCLK, Pin 5	-	100.000	-	MHz
Frequency Accuracy	FACC1	REFCLK, Pin 9	-30	+/-0	30	ppm
Frequency Accuracy	FACC2	SSCLK, Pin 5, SSEL0/1=0	-30	+/-0	30	ppm
Rise and Fall Time	TR/F-1	REFCLK, Pin 9, CL=5pF, measured from 20% to 80% of VDD	-	1.0	1.5	ns
Rise and Fall Time	TR/F-2	REFCLK, Pin 9, CL=15pF, measured from 20% to 80% of VDD	-	1.5	2.0	ns
Rise and Fall Time	TR/F-3	SSCLK, Pin 5, CL=5pF, measured from 20% to 80% of VDD	-	0.75	1.0	ns
Rise and Fall Time	TR/F-4	SSCLK, Pin 5, CL=15pF, measured from 20% to 80% of VDD	-	1.5	1.75	ns
Output Duty Cycle	DC	SSCLK and REFCLK, Pins 5 and 9, measured at VDD/2, CL=15pF	45	50	55	%
Cycle-to-Cycle Jitter	CCJ	SSCLK/REFCLK, Pins 5 and 9	-	125	200	ps
Long Term Jitter	LTJ	REFCLK, Pins 9, 10,000 cycles	-	130	300	ps
Power-up Time (VDD)	tPU1	Time from 0.9VDD to valid frequency at output Pins 5 and 9	-	2.0	5.0	ms
Spread Percent Change Settling Time	tSS%	Time from SSEL0/1 change to stable SSCLK with spread %	-	-	1.0	ms
Modulation Frequency	MF	SSCLK, 100MHz nominal, Pin 5 31 32		33	kHz	
Modulation Type and Slew Rate	FMTSR	SSCLK Pin 5 Triangular Modulation		-	0.125	%/µs

Table 5. SSEL1 and SSEL0 versus Spread % Selection at SSCLK

SSEL1 (Pin 3)	SSEL0 (Pin 7)	Spread Percent (%) SSCLK (Pin 5)
Low (VSS)	Low (VSS)	Spread Off (No Spread)
Low (VSS)	Middle (VDD/2)	-0.50%
Low (VSS)	High (VDD)	-2.5%
Middle (VDD/2)	Low (VSS)	-0.25%
Middle (VDD/2)	Middle (VDD/2)	-0.75%
Middle (VDD/2)	High (VDD)	-1.0%
High (VDD)	Low (VSS)	-1.5%
High (VDD)	Middle (VDD/2)	-2.0%
High (VDD)	High (VDD)	-3.0%

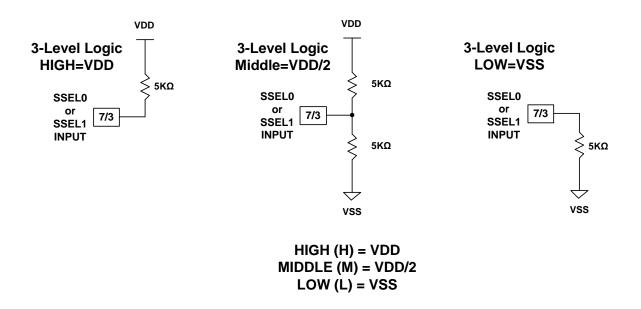
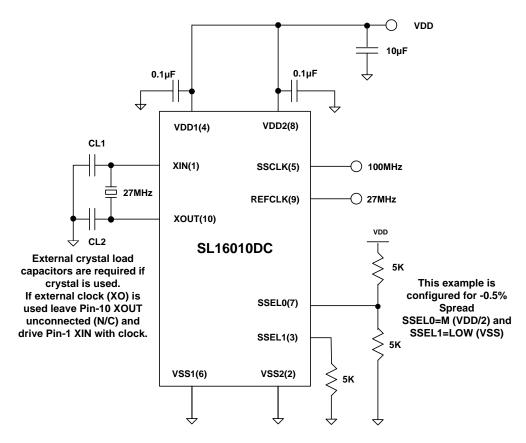

Note: Middle (VDD/2) state requires $5k\Omega/5k\Omega$ external resistors as shown in Figure 3, page 5.

Table 6. Recommended Crystal Specifications

Description	Min	Тур	Max	Unit
Nominal Frequency (Fundamental Crystal)	-	27.000	-	MHz
Crystal Accuracy	-	+/-10	-	ppm
Load Capacitance	8	12	18	pF
Shunt Capacitance	-	-	7.0	pF
Equivalent Series Resistance (ESR)	-	-	30	Ω
Drive Level	-	-	1.0	mW

Figure 3. FSEL0 and FSEL1 Spread % Selection Logic


Note: SSEL0 and SSEL1 pins use 3-Level L(LOW) = VSS, M(MIDDLE)=VDD/2 and H(HIGH) = VDD 3-Level logic to provide 9 spread % values at SSCLK (pin 5) as given in Table 5.

Use $5k\Omega/5k\Omega$ external resistor divider at SSEL0 and SSEL1 pins from VDD to VSS to obtain VDD/2 for M=VDD/2 Logic level as shown above in Figure 3.

External Components and Design Considerations

Typical Application Circuit

Figure 4. Typical Application Schematic

Comments and Recommendations

Crystal and Crystal Load: Only use a parallel resonant fundamental AT cut crystal. DO NOT USE higher overtone crystals. To meet the crystal initial accuracy specification (in ppm) make sure that external crystal load capacitor is matched to crystal load specification. To determine the value of CL1 and CL2, use the following formula;

C1 = C2 = 2CL - (Cpin + Cp)

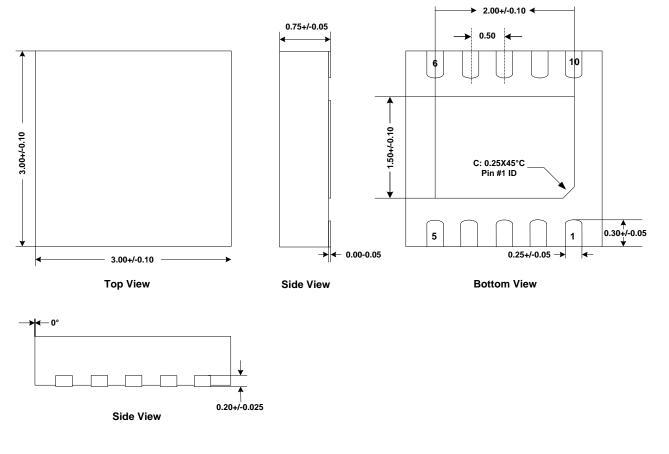
Where: CL is load capacitance stated by crystal manufacturer

Cpin is the SL16010 pin capacitance (4pF)

Cp is the parasitic capacitance of the PCB traces.

EXAMPLE; if a crystal with CL=12pF specification is used and Cp=1pF (parasitic PCB capacitance on PCB), 19 or 20pF external capacitors from pins XIN (pin-1) and XOUT (Pin-10) to VSS are required since CXIN=CXOUT=4pF for the SL1610DC product. Users must verify Cp value.

Decoupling Capacitor: A decoupling capacitor of 0.1μ F must be used between VDD1/2 pins and VSS1/2 pin. Place the capacitor on the component side of the PCB as close to the VDD1/2 pins as possible. The PCB trace to the VDD1/2 pins and to the VSS via should be kept as short as possible Do not use vias between the decoupling capacitor and the VDD1/2 pins. In addition, a 10uf capacitor should be placed between VDD and VSS.


Series Termination Resistor: A series termination resistor is recommended if the distance between the outputs (REFCLK and SSCLK) and the load if PCB trace is over 1 $\frac{1}{2}$ inch. The nominal impedance of the outputs is about 24 Ω . Use 22 Ω resistors in series with the outputs to terminate 50 Ω trace impedance and place 22 Ω resistors as close

to the clock outputs as possible.

Package Outline and Package Dimensions 10-Pin TDFN Package (3x3x0.75 mm)

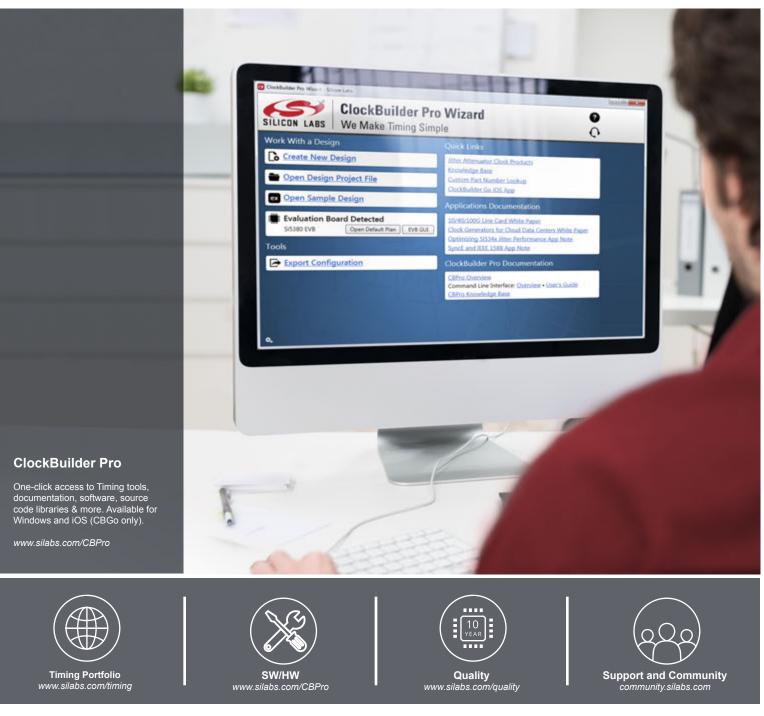
Dimentions are in mm

Table 7. Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Thermal Resistance Junction to Ambient	θJA1	Still air	-	75	-	°C/W
	θја2	1m/s air flow	-	70	-	°C/W
	Өјаз	3m/s air flow	-	55	-	°C/W
Thermal Resistance Junction to Case	θις	Independent of air flow	-	25	-	°C/W

Table 8. Ordering Information

Ordering Number	Marking	Marking Shipping Package		Temperature
SL16010DC	SL16010DC	Tube	10-pin TDFN	-10 to 85°C
SL16010DCT	SL16010DC	Tape and Reel	10-pin TDFN	-10 to 85°C


Note:

1. SL16010DC is RoHS compliant and Halogen Free.

Product Revisions History

Revision	Date	Originator	Description
Rev 0.5	12/12/2009	C. Ozdalga	Original.
Rev 1.0	1/30/2009	C. Ozdalga	Reduce IDD-max to 18 mA from 28 mA. Change Cxin/Cxot from 4 pF to 6 pF. Change R/R divider from $10\Omega/10k\Omega$ to $5k\Omega/5k\Omega$. Add Pull-down resistors definition for SSEL0/1 pins on Pin Description Table. Improve Typical Application Circuit. Remove LTJ for SSCLK until new specification is obtained from customer.
Rev 1.0	2/23/2009	C. Ozdalga	Change 13.5mA-max to 15mA-typ (Key Features – Page-1)
Rev 2.0	2/30/2009	C. Ozdalga	Final production version revision number change to Rev 2.0.
Rev 2.1	4/14/2009	C. Ozdalga	Correct Page 7 package pin number typing error.
Rev 2.2	4/22/2009	C. Ozdalga	Page 3 CIN1, CXI/CXOUT pin capacitance changed to 4pF-typ from 6pF-typ.
Rev 2.3	9/1/2009	C. Ozdalga	Replace "floating" with "VDD/2" in table 5 on page 4 and add note under the same table 5 for clarification. Redo Figure 3 to clarify 3-Level Logic and add $5K\Omega$ resistor from SSEL1 to VSS in Figure 4 on page 6. Change Table 1 to Table 5 on pin description table page 2 for SSEL1 and SSEL0 rows.
Rev 2.4	9/3/2009	C. Ozdalga	Replace "floating" with "VDD/2" in table 5 on page 4 under SSEL1.
Rev 2.5	6/4/2010	C. Ozdalga	Add clock input specifications. SL16010DC can be driven by an external crystal or clock.
Rev 2.6	8/1/2010	C. Ozdalga	Add Halogen Free, page 8.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories parameters and admages.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories, A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com